7 resultados para rehydration

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The natriuretic peptide (NP) system is a complex family of peptides and receptors that is primarily linked to the maintenance of osmotic and cardiovascular homeostasis. In amphibians, the potential role(s) of NPs is complicated by the range of osmoregulatory strategies found in amphibians, and the different tissues that participate in osmoregulation. Atrial NP, brain NP, and C-type NP have been isolated or cloned from a number of species, which has enabled physiological studies to be performed with homologous peptides. In addition, three types of NP receptors have been cloned and partially characterised. Natriuretic peptides are always potent vasodilators in amphibian blood vessels, and ANP has been shown to increase the permeability of the microcirculation. In the perfused kidney, ANP causes vasodilation, diuresis and natriuresis that are caused by an increased GFR rather than effects in the renal tubules. These data are supported by the presence of ANP receptors only on the glomeruli and renal blood vessels. In the bladder and skin, the function of NPs is enigmatic because physiological analysis of the effects of ANP on bladder and skin function has yielded conflicting data with no clear role for NPs being revealed. Overall, NPs often have no direct effect, but in some studies they have been shown to inhibit the function of AVT. In addition, there is evidence that ANP can inhibit salt retention in amphibians since it can inhibit the ability of adrenocorticotrophic hormone or angiotensin II to stimulate corticosteroid secretion. It is proposed that an important role for cardiac NPs could be in the control of hypervolaemia during periods of rapid rehydration, which occurs in terrestrial amphibians.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemical substances that induce larval settlement have been the focus of many gastropod studies due to the importance of wild stock recruitment and production within aquaculture facilities. Gamma-aminobutyric acid (GABA), GABA analogs, and GABA-mimetics associated with certain crustose coralline algae (CCA), are known to induce larval settlement in commercial abalone (Haliotis) species, and other gastropods. Furthermore, mucus secreted from these gastropods has been shown to induce larval settlement, but the stimulatory components of mucus have not been thoroughly investigated. We now present data confirming that GABA is the settlement-inducing effector molecule contained within abalone mucus. To do this, we initially generated anti-GABA for use in immunoenzyme and immunofluorescent microscopy. Using these techniques GABA was identified in the nerves and epithelial cells of the foot, including mucus. Dried mucus samples subject to HPLC analysis revealed a mean concentration of 0.68 mM GABA after sample rehydration. The presence of GABA in these samples was confirmed by time-of-flight mass spectroscopy (TOF-MS). In addition, GABA was detected in the mucus of several abalone species and other gastropods by immunocytochemistry. Subsequent bioassays using both dry and fresh mucus strongly promoted induction of larval settlement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on the solubility of hen lysozyme (HEWL) in aqueous ethylammonium nitrate (EAN) as a function of water content. We find the solubility behavior to be complex, exhibiting both a maximum (400 mg/mL) at very high EAN content) and a minimum at intermediate EAN content. We exploit this solubility profile in a novel approach to generating crystals of hydrophilic proteins, based on rehydration of a high concentration protein solution. We describe the production of crystals of X-ray diffraction quality. Two related ionic liquid solvent systems, with the same solubility profiles but different effective pH characteristics, are identified for future evaluation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Achieving an appropriate balance between training and competition stresses and recovery is important in maximising the performance of athletes. A wide range of recovery modalities are now used as integral parts of the training programmes of elite athletes to help attain this balance. This review examined the evidence available as to the efficacy of these recovery modalities in enhancing between-training session recovery in elite athletes. Recovery modalities have largely been investigated with regard to their ability to enhance the rate of blood lactate removal following high-intensity exercise or to reduce the severity and duration of exercise-induced muscle injury and delayed onset muscle soreness (DOMS). Neither of these reflects the circumstances of between-training session recovery in elite athletes. After high-intensity exercise, rest alone will return blood lactate to baseline levels well within the normal time period between the training sessions of athletes. The majority of studies examining exercise-induced muscle injury and DOMS have used untrained subjects undertaking large amounts of unfamiliar eccentric exercise. This model is unlikely to closely reflect the circumstances of elite athletes. Even without considering the above limitations, there is no substantial scientific evidence to support the use of the recovery modalities reviewed to enhance the between-training session recovery of elite athletes. Modalities reviewed were massage, active recovery, cryotherapy, contrast temperature water immersion therapy, hyperbaric oxygen therapy, nonsteroidal anti-inflammatory drugs, compression garments, stretching, electromyostimulation and combination modalities. Experimental models designed to reflect the circumstances of elite athletes are needed to further investigate the efficacy of various recovery modalities for elite athletes. Other potentially important factors associated with recovery, such as the rate of post-exercise glycogen synthesis and the role of inflammation in the recovery and adaptation process, also need to be considered in this future assessment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plasticity or evolution in behavioural responses are key attributes of successful animal invasions. In northern Australia, the invasive cane toad (Rhinella marina) recently invaded semi-arid regions. Here, cane toads endure repeated daily bouts of severe desiccation and thermal stress during the long dry season (April-October). We investigated whether cane toads have shifted their ancestral nocturnal rehydration behaviour to one that exploits water resources during the day. Such a shift in hydration behaviour could increase the fitness of individual toads by reducing exposure to desiccation and thermal stress suffered during the day even within terrestrial shelters. We used a novel method (acoustic tags) to monitor the daily hydration behaviour of 20 toads at two artificial reservoirs on Camfield station, Northern Territory. Remarkably, cane toads visited reservoirs to rehydrate during daylight hours, with peaks in activity between 9.00 and 17.00. This diurnal pattern of rehydration activity contrasts with nocturnal rehydration behaviour exhibited by adult toads in their native geographical range and more mesic parts of Australia. Our results demonstrate that cane toads phase shift a key behaviour to survive in a harsh semi-arid landscape. Behavioural phase shifts have rarely been reported in invasive species but could facilitate ongoing invasion success.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report synthesis, characterization, and properties of a multifunctional oxalate framework, {KDy(C2O4)2(H2O)4}n (1) (C2O42- = oxalate dianion) composed of two absolutely different metal ions in terms of their size, charge, and electronic configuration. Dehydrated framework (1′) exhibits permanent porosity and interesting solvent (H2O, MeOH, CH3CN, and EtOH) vapor sorption characteristics based on specific interactions with unsaturated alkali metal sites on the pore surface. Compound 1 shows solvent responsive bimodal magnetic and luminescence properties related to the DyIII center. Compound 1 exhibits reversible ferromagnetic to antiferromagnetric phase transition upon dehydration and rehydration, hitherto unknown for any lanthanide based coordination polymer or metal-organic frameworks. Both the compounds 1 and 1′ exhibit slow magnetic relaxation with very high anisotropic barrier (417 ± 9 K for 1 and 418 ± 7 K for 1′) which has been ascribed to the single ion magnetic anisotropy of the DyIII centers. Nevertheless, compound 1 shows a metal based luminescence property in the visible region and H2O molecules exhibit the strongest quenching effect compared to other solvents MeOH, MeCN, and EtOH, evoking 1′ as a potential H2O sensor.